

HCW-003-001302

Seat No.

B. Sc. (Sem. III) (CBCS) Examination

October / November - 2017

Physics: Paper - 301

(Thermodynamics, Electricity, Magnetism, Electronics & Modern Physics.)
(Old Course)

Faculty Code: 003 Subject Code: 001302

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions: (1) All questions are compulsory.

- (2) Symbols have their usual meanings.
- (3) Figures on the right side indicates full marks.
- (4) Non-programmable scientific calculator is allowed.
- 1 Answer the following questions. Each question carry one mark:
 - (1) Define flexural rigidity.
 - (2) Write stoke's formula relating the terminal velocity and viscous drag.
 - (3) Give the mathematical representation of the first law of thermodynamics.
 - (4) Define the thermal efficiency of a heat engine.
 - (5) What will be the change in entropy in a reversible process?
 - (6) Write the expression for Stefan's law for a perfectly black body.
 - (7) State Wein's law of radiation.
 - (8) Write the expression for gauss's theorem.
 - (9) The potential energy of a capacitor having capacity C is
 - (10) $\frac{N}{A.M.}$ is the units of _____.

- (11) Define magnetic susceptibility.
- (12) Why soft iron is used to manufacture the electromagnets?
- (13) Name the types of theory of relativity.
- (14) Write the equation giving universal equivalence between mass and energy.
- (15) The mass and energy are two different forms of the same entity. True of False?
- (16) What should be the ideal value of stability factor?
- (17) Which transistor biasing method has smallest value of stability factor?
- (18) What is the function of coupling capacitor in an RC-Coupled amplifier?
- (19) Find the voltage gain of a transistor amplifier having $R_L = R_{in} = 1K\Omega, R_C = 2K\Omega$ and $\beta = 100$.
- (20) What will be the phase difference between input and output voltage of a CE amplifier?
- 2 (A) Answer the following questions in short: (Any Three) 6
 - (1) Explain: Stress and Strain.
 - (2) Explain: Streamline and Turbulent flow.
 - (3) Write a note on heat engine.
 - (4) Show that the entropy does not change in an adiabatic process.
 - (5) Write any four properties of radient heat.
 - (6) Write the factors on which the capacity of a parallel plate capacitor depends.
 - (B) Answer the following questions in brief: (Any **Three**) 9
 - (1) Explain Reynold's number and give its significance.
 - (2) Explain Newton's law of viscous how and define co-efficient of viscosity.
 - (3) Explain the workdone during expansion of a gas at constant pressure.
 - (4) Write a note on entropy and disorder.
 - (5) Explain energy distribution curve with important points.
 - (6) Explain the potential energy of a capacitor.

- (C) Answer the following questions in detail: (Any Two) 10
 - (1) Derive an expression for bending moment of the beam.
 - (2) Derive an expression for work done by a gas during isothermal expansion.
 - (3) Explain blackbody radiation and Stefan's law of black body.
 - (4) State and prove Gauss's theorem.
 - (5) Obtain the potential and electric field due to electric dipole.
- 3 (A) Answer the following questions in short: (Any Three) 6
 - (1) Explain magnetic flux.
 - (2) Explain hall co-efficient and hall mobility.
 - (3) Write a note on time dialation.
 - (4) What is stabilization and why it is needed?
 - (5) Explain frequency response curve of an RC-Coupled CE amplifier.
 - (6) Graphically explain the phase reversal in CE amplifier.
 - (B) Answer the following questions in brief: (Any **Three**) 9
 - (1) A magnetic field of 3.0×10^{-4} T balance a perpendicular electric field of 9 KV in their effect on an electron beam passing through the two fields in a direction perpendicular to both of them. Find the speed of electron.
 - (2) Explain: Magnetic susceptibility, Magnetic permeability and relative magnetic permeability.
 - (3) Obtain Galilean transformations.
 - (4) Write and explain the fundamental postulates of special relativity.
 - (5) Explain the inherent variations of transistor parameters.
 - (6) Show that the output voltage of a single stage CE transistor amplifier is 180° out of phase with input voltage.

- (C) Answer the following questions in detail: (Any Two) 10
 - (1) Explain energy loss due to hysteresis.
 - (2) Write Einstein's velocity addition theorem and show that it is not possible to exceed the velocity of light.
 - (3) Calculate the mass m and speed U of and electron having kinetic energy of 1 Mev.

$$[m_0 = 9.11 \times 10^{-31} \text{kg} \text{ and } C = 3 \times 10^8 \text{m/s}]$$

- (4) Describe voltage divider bias method and obtain expression for its stability factor.
- (5) Obtain d.c. and a.c. load lines.